Curriculum Progression Pathway

PHYSICS

Why is the study of Physics important?

Physics is the branch of science which endeavours to explore and gain understanding of the very large (Universe) right down to the very small (quantum behaviour) and everything in between! These extremes of scale such as the structure of stellar systems right down to the constituents of the elementary particles can be understood by applying theories, models and mathematical reasoning.

Physics is one of the three sciences that underpin most if not all scientific understanding. The lines between the three sciences can cross and with this are 'bridging' sciences such as biophysics, biochemistry and chemical physics. On a larger scale, even at a terrestrial level we have meteorology and then at a stellar scale we have astronomy and astrophysics yet further and grander still we have the study of cosmology.

The key focus of physics is achieving an understanding of a wide range of what scientists describe as 'phenomena' with the ultimate goal of developing a grand theory of everything (still yet to be achieved!), for example a basic understanding of how a light bulb works can lead to a comprehensive understanding of how stars are formed.

In developing an understanding of this phenomena Physics has led to the discovery and production of materials, structures, processes and devices some of which can have productive ends, or some that can be catastrophically destructive. The contribution that physics has had has created our modern world such as communications, transport, electronic devices has been the backbone to industry and commerce.

Physics will be taught in a way to develop curiosity about the natural and modern world. The curriculum will develop insight into how science works and a full appreciation of its relevance to our everyday lives. The scope and nature of studying physics will be broad, practical and relevant. It is our vision to encourage students to be inspired, motivated and challenged by science and its contribution to society.

Across your study you will explore energy, space physics, electricity, atomic structure, forces and waves. You will develop an appreciation of how these topics are essentially interlinked. Lessons will provide a wide range of opportunities for practical experiments, demonstrations and modelling of complex theories that surround us in our everyday lives. Your Science classroom will be brimming with practical experiments where you will learn to formulate hypothesise, analyse data and write conclusions. You will engage with ideas such as the scientific process and how throughout history this process has led to some of the greatest scientific discoveries. Seems challenging - you are going to love it! Physics will expand, and at times blow-your mind!

Big Questions: How does the light bulb work? How does it switch on so fast? What can this tell us about elementary particles?

How can an understanding of magnets lead to a further understanding of how a motor works or how we link our home to power stations?

How can an understanding of atomic structure lead to some of the most advanced medical techniques whilst at the same time lead to catastrophic contamination and hazards?

What skills will the study of Physics teach you?

You are a citizen in this world and you need to know how the natural and modern world works. It will teach you to...

- Understand theories that explain phenomena
- Apply basic ideas and models that support understanding
- Evaluate models and theories
- Present theories in mathematical form
- Recall quantitative relationships
- Derive quantitative relationships between various measured quantities
- Explain how theories are borne out by experiment.
- Apply experimental procedure and understand that it is a measure of success of a theory
- Present, interpret and evaluate experimental data
- Apply mathematical skills to solve problems
- Develop a deeper understanding of everyday experiences including the natural world and modern devices.

What will you know and understand from your study of Physics?

- Develop scientific knowledge and conceptual understanding of physics
- Develop understanding of the nature, processes and method of physics
- Develop and learn to apply observational, practical, modelling, enquiry and problem-solving skills, both in the laboratory, in the field and in other learning environments.
- Develop their ability to evaluate claims based on physics through critical analysis of the methodology evidence and conclusions, both qualitatively and quantitatively.

How does your study of Physics support your study in other subjects?

Physics touches on so many other subjects such as mathematics, applied mathematics, chemistry, biology, music, construction and design. You will learn methods of thinking and research that are widely applicable to other subject areas helping your thinking in all subjects. As a science Physics relies heavily upon evidence to test predictions and theories. Through developing mathematical techniques as well as applying reasoning your skills to present and justify information can be applied to most careers and further education.

Across the teaching of subjects, teachers will make reference to your learning in other areas such as mathematics, biology and chemistry and this will help you to develop your understanding. There are even opportunities to apply this learning in Y7 and 8 when interdisciplinary study days are organised to deepen your understanding across the curriculum such as when our STEM departments work together to solve a common problem.

How can you deepen your understanding of Physics?

Our Science department offers lots of great opportunities for you to really engage with this fabulous subject. Why not look out for our science club on a Monday after school. We offer STEM events and activities that may include opportunities to visit local colleges and universities. There may be visits to science museums and events that celebrate great scientists and discoveries. We offer after school support sessions for GCSE students. There are many books we recommend reading and that you will find in our LRC these include Six Easy Pieces: Essentials of Physics Explained by its Most Brilliant Teacher and The Physics Book: Big Ideas Simply Explained

How are you assessed in Physics?

Throughout the 5 years Physics course you are assessed using the following assessment objectives which ensure that you can cumulatively build your subject understanding in preparation for future GCSE and A Level study. There are 3 assessment points for Y7-9 and 6 assessment points for years 10 and 11 that we term Praising Stars. For younger years we base our assessment on our subject mapping of the age related expectations across the curriculum, assessing students' performance at their current stage of study against expectation. At GCSE we make informed predictions informed by our holistic assessment of their progress against the key assessment objectives and their aspirational GCSE targets. These are also the basis for any appropriate support and intervention.

Key Assessment Objectives

AOI: Demonstrate knowledge and understanding of:

- Scientific ideas
- Scientific techniques
- Scientific procedures

AO2: Apply knowledge and understanding of:

- Scientific ideas
- Scientific enquiry
- Scientific techniques and procedures

AO3: Analyse information and ideas to:

- Interpret and evaluate
- Make judgements and draw conclusions
- Develop and improve experimental procedures.

How can Physics support your future?

Physics is offered at most prestigious universities either as a single honours or a joint honours subject studied alongside other disciplines e.g. can name some courses. The very fact that you have been able to study Physics, your analytical thinking and mathematical reasoning will help your future application be they for colleges, universities, apprenticeships or employment.

Careers that the study of Physics supports include:

- Teaching!
- Medicine
- Engineering (electrical, software, medical, civil, mechanical)
- Geophysics
- Scientific research and development
- Product design
- Aeronautical engineering
- Construction
- Architecture
- Civil or medical engineer,
- Astrophysics
- Astronomer

SCIENCE CURRICULUM PROGRESSION PATHWAY AT OUTWOOD ACADEMY Shafton 24/25

	Year 7	Year 8	Year 9	Year 10	Year II
Autumn I	Unit I - Introduction to Science	Unit 6 - Plants, Ecology and Climate	Unit 11 - Electricity and	P2- Electricity	P5 - Forces
	Unit 2 - Matter and Energy	change	Magnetism	C2 - Bonding and Structure	B5 - Homeostasis and Response
		Unit 7 – Forces	Unit 12 - Patterns and Materials	C3 - Quantitative Chemistry	B6 - Inheritance
			Unit 13 - Health		C6 - Rates of reaction
			End of KS3 assessments and consolidation		C7 - Organic Chemistry
	III: 2 May and France	III 7 Fare		C2 O animi Chanin	DC W
	Unit 2 - Matter and Energy	Unit 7 – Forces	T	C3 - Quantitative Chemistry	P6 - Waves
	Unit 3 - Chemical Substances	Unit 8 - Chemical Reactions	Transitional Unit 1 Chemistry -	C4 - Chemical changes	B6 - Inheritance
			Atomic structure	B3 - Infection and Response	C8 - Chemical analysis
			Transitional		
			Unit I Biology - Cells		
Spring	Unit 3 - Chemical Substances	Unit 8 - Chemical Reactions		B4 - Bioenergetics	P7 - Magnetism and
	Unit 4 - Animal Organ Systems	Unit 9 - Cells, Evolution and		C5 - Energy Changes	Electromagnetism
		Inheritance	Unit I Physics - Energy	P4 - Atoms and Radiation	C9 - Chemistry of the atmosphere
ı					C10 - Using Resources
			B2 - Organisation		4.11
					778

Spring 2	Unit 4 - Animal Organ Systems Unit 5 - Space, Earth and Sustainability	Unit 9 - Cells, Evolution and Inheritance Unit 10 - Waves	C2 - Chemical Bonding P2 - Electricity	Paper I Consolidation P5 - Forces C6 - Rates of Reaction (F) C7 - Organic Chemistry (F)	P8 - Space (Triple science) Paper 2 Consolidation
Summer I	Unit 5 - Space, Earth and Sustainability Unit 6 - Plants, Ecology and Climate Change	Unit 10 - Waves Unit 11 - Electricity and Magnetism	C2 - Bonding	P5 - Forces P7 - Magnetism	Masterclasses, Revision & Exams
Summer 2	Unit 6 - Plants, Ecology and Climate Change	Unit 11 - Electricity and Magnetism Unit 12 - Patterns and Materials	C2 - Bonding B2 - Organisation	B5 - Homeostasis and Response B7 - Ecology C8 - Analysis	Exams