Curriculum Progression Pathway

CHEMISTRY

CHEMISTRY

Why is the study of Chemistry important?

Chemistry is the branch of science which endeavours to explore and gain understanding of the composition, behaviour and properties of matter, and of the elements of the Earth and its atmosphere. Of the three sciences Chemistry is the one that underpins the conceptual framework and methodology of biochemistry, molecular medicine and is at the heart of many if not all scientific understanding. It is hard to imagine any product of modern times which has not required the efforts of a chemist at some point in its development. The lines between the three sciences can cross and chemistry is the subject which forms the bridge between the three.

The key focus of Chemistry is achieving an understanding of the basic principles with the ultimate goal of developing a greater understanding of the how and the why. In developing an understanding of this phenomena Chemistry has led to the discovery and production of materials, structures, processes and devices some of which can have productive ends, or some that can be catastrophically destructive. Chemistry's contribution to our modern world is immense. It has changed how we use medicines, materials, fuels and chemicals to form the backbone of industry, commerce and life itself.

Chemistry will be taught in a way to develop curiosity about the natural and modern world. Our curriculum develops insight into how science works and a full appreciation of its relevance to our everyday lives. The scope and nature of studying Chemistry will be broad, practical and relevant. It is our vision to encourage students to be inspired, motivated and challenged by science and its contribution to society.

Across your study you will explore atomic structure, quantitative structure, organic chemistry, chemical analysis, rate of chemical change and chemistry and the atmosphere You will develop an appreciation of how these topics are essentially interlinked. Lessons will provide a wide range of opportunities for practical experiments, demonstrations and modelling of complex theories that surround us in our everyday lives. Your Science classroom will be brimming with practical experiments where you will learn to formulate hypotheses, analyse data and write conclusions. You will engage with ideas such as the scientific process and how throughout history this process has led to some of the greatest scientific discoveries. Seems challenging? You are going to love it! Chemistry will explode your mind!

Big Questions

How do elements join together? What can this tell us about elementary particles? How can understanding the structure of an atom lead to a further understanding of why a chemical reacts the way it does? How can we link this to the environment and the future of our planet? How can an understanding of atomic structure can lead to some of the most advanced medical techniques whilst at the same time lead to catastrophic contamination and hazards?

What skills will the study of Chemistry teach you?

You are a citizen in this world and you need to know how the natural and modern world works. It will teach you to;-

- Understand theories that explain phenomena
- Apply basic ideas and models that support understanding
- Evaluate models and theories
- Present theories in mathematical form
- Recall quantitative relationships
- Derive quantitative relationships between various measured quantities
- Explain how theories are borne out by experiment.
- Apply experimental procedure and understand that it is a measure of success of a theory
- Present, interpret and evaluate experimental data
- Apply mathematical skills to solve problems
- Develop a deeper understanding of everyday experiences including the natural world and modern devices.

What will you know and understand from your study of Chemistry?

- Develop scientific knowledge and conceptual understanding of Chemistry
- Develop understanding of the nature, processes and methods of how the elements interact
- Develop and learn to apply observational, practical, modelling, enquiry and problem-solving skills, both in the laboratory, in the field and in other learning environments.
- Develop their ability to evaluate claims based on scientific discoveries through critical analysis of the methodology evidence and conclusions, both qualitatively and quantitatively.

How does your study of Chemistry support your study in other subjects?

Study of any subject in our curriculum takes full advantage of links with other subject areas- we term these as interdisciplinary links and we make the most of them because we know that deep learning requires the transference of knowledge and skills from one topic of learning to another. Once you can transfer your learning across topics and subject areas then you are really mastering what you know and how to apply your understanding and skills.

Chemistry touches on so many other subjects such as mathematics, applied Mathematics, Chemistry, Biology, Music, Construction and Design. You will learn methods of thinking and research that are widely applicable to other subject areas helping your thinking in all subjects. As a science Chemistry relies heavily upon evidence to test predictions and theories. Through developing mathematical techniques as well as applying reasoning your skills to present and justify information can be applied to most careers and further education.

Across the teaching of subjects, teachers will make reference to your learning in other areas such as Mathematics, Biology and Physics and this will help you to develop your understanding. There are even opportunities to apply this learning in Y 7 and 8 when interdisciplinary study days are organised to deepen your understanding across the curriculum such as when our STEM departments work together to solve a common problem.

How can you deepen your understanding of Chemistry?

Our Science department offers lots of great opportunities for you to really engage with this fabulous subject. Why not look out for the KS3 Mad Scientists enrichment club on offer, with a different theme each term for Years $7 \& 8$. We will offer STEM events and activities that may include opportunities to visit local colleges and universities and visitors to the academy offering extra enrichments when circumstances allow. There may be visits to science museums and events that celebrate great scientists and discoveries. We offer after school support sessions for GCSE students and work with other departments to enhance learning such as maths in science and geography in science. These involve both practical and theoretical sessions, alongside other fun revision sessions such as themes quizzes and problem solving challenges. Get involved!

How are you assessed in Chemistry?

Throughout the 5 year Chemistry course, 3 in key stage 3 and 2 in key stage 4 you are assessed using the following assessment objectives which ensure that you can cumulatively build your subject understanding in preparation for future GCSE and A Level study. There are five half-term assessment points in KS4 that we term Praising Stars@. In Key Stage 3 these are done at the end of each full term. There are interim assessment activities scheduled as summative assessment both during and at the end of topic questions. For younger years we base our assessment on our subject mapping of the age related expectations across the curriculum, assessing students' performance at their current stage of study against expectation. At GCSE we make informed predictions informed by our holistic assessment of their progress against the key assessment objectives and their aspirational GCSE targets.

Key Assessment Objectives

AOI: Demonstrate knowledge and understanding of:

- Scientific ideas
- Scientific techniques
- Scientific procedures

AO2: Apply knowledge and understanding of:

- Scientific ideas
- Scientific enquiry
- Scientific techniques and procedures

AO3: Analyse information and ideas to:

- Interpret and evaluate
- Make judgements and draw conclusions
- Develop and improve experimental procedures.

How can chemistry support your future?

Of course we offer the study of GCSE chemistry and we encourage your continued study in this fantastic subject. Yet we know that choice and personal interest are important aspects of worthy study. Whether you have continued your study of chemistry into A level at a local post-I6 provider or not you will have gained access to this enriching subject and its study will have taught you to think differently and deeply.

Chemistry is offered at most prestigious universities either as a single honours or a joint honours subject studied alongside other disciplines e.g. chemical engineering, veterinary sciences and medicine. The very fact that you have been able to study chemistry strengthens your analytical thinking and mathematical reasoning that will help your future application be they for colleges, universities, apprenticeships or employment.

Careers that the study of Chemistry supports include:

- Teaching!
- Medicine
- Veterinary science
- Chemical Engineering
- Forensic Science
- Biochemistry
- Pharmacy
- Nursing
- Paramedics
- Dentistry
- Pharmacology

SCIENCE CURRICULUM PROGRESSION PATHWAY AT OUTWOOD ACADEMY BISHOPSGARTH

	Year 7	Year 8	Year 9	Year 10	Year 11
Autumn I	Unit I Introduction to Science, bridging the gap between KS2 and KS3 and looking at core science skills.	Unit 6 - Plants. Ecology and climate change.	Unit 9 - Theme I Cells, Reproduction and Inheritance Unit 10 - Theme 2 Sound	BI - Cell Biology CI - Atomic Structure PI - Energy	B6 - Inheritance C2 - Bonding and structure C3-Quantitative Chemistry P5 - Forces
Autumn 2	Unit 2 - Matter and Energy. Unit 3 - Chemical substances.	Unit 7 - Forces	Unit II - Electricity and Electromagnetism	BI - Cell biology P2 - Electricity and Magnetism C2 - Bonding and structure	B6 - Inheritance C7-Organic Chemistry P6 - Waves
Spring I	Unit 3 - Chemical substances. Unit 4 - Animal Organ systems.	Unit 8 - Chemical Reactions	Unit II Electricity and Electromagnetism Unit I2- Patterns and Materials	B2 - Organisation C3-Quantitative chemistry P2 - Electricity and magnetism P3 - Particle model of matter	C7-Organic Chemistry P7 - Magnetism and Electromagnetism
Spring 2	Unit 4 - Animal organ systems.	Unit 9 - Cells Evolution and Inheritance	Unit 13-Health and Disease	B3 - Infection and response C4-Chemical changes	P8 - Space, triple science only Masterclasses and Revision

Summer 1	Unit 5-Space, Earth and Sustainability.	Unit 9-Cells Evolution and Inheritance Unit I0. Waves	Unit I3-Health and Disease	C4-Chemical changes C5 - Energy changes P4-Atomic Structure	Masterclasses and Revision
Summer 2	Unit 5-Space, Earth and Sustainability.	Unit 10. Waves	KS3 Assessments and consolidation	B4- Bioenergetics B5 - Homeostasis and response P5 - Forces	Revision

